Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[diaquamanganese(II)]-di- μ -pyridine-3-sulfonato- $\left.\kappa^{2} N: O ; \kappa^{2} O: N\right]$

Zhi-Hui Qiu, ${ }^{\text {a,b }}$ Fu-Pei Liang, ${ }^{\text {a* }}$ Qing-Feng Ruan ${ }^{c}$ and Shan-Rong Zhao ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, ${ }^{\mathbf{b}}$ Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, People's Republic of China, and ${ }^{\text {c }}$ Department of Resources and Environmental Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
Correspondence e-mail: fupeiliang@yahoo.cn

Received 7 March 2008; accepted 28 April 2008

Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.027 ; w R$ factor $=0.070 ;$ data-to-parameter ratio $=14.0$.

In the title polymeric complex, $\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the Mn atom is located on a centre of inversion and is coordinated by two O atoms and two N atoms derived from four different pyridine-3-sulfonate $\left(\mathrm{pySO}_{3}\right)$ ligands, and two O atoms derived from two water molecules in a distorted trans- $\mathrm{N}_{2} \mathrm{O}_{4}$ octahedral geometry. The metal atoms are bridged by the pySO_{3} ligands to form a one-dimensional chain. The chains are further connected into a three-dimensional architecture via hydrogen bonds.

Related literature

For related structures, see: Brodersen et al. (1980); Chandrasekhar (1977); Cotton et al. (1992a,b); Mäkinen et al.(2001); van der Lee \& Barboiu (2004); Walsh \& Hathaway (1980). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data
$\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=407.28$
Monoclinic, $P 2_{1} / \mathrm{c}$
$a=7.6299$ (13) \AA
$b=13.201$ (2) \AA
$c=7.2714$ (12) \AA
$\beta=96.516(3)^{\circ}$

$$
V=727.7(2) \AA^{3}
$$

$Z=2$
Mo $K \alpha$ radiation
$\mu=1.24 \mathrm{~mm}^{-1}$
$T=294$ (2) K
$0.24 \times 0.22 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
4034 measured reflections 1485 independent reflections 1301 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$
Absorption correction: multi-scan (SADABS; Bruker, 1998)
$T_{\text {min }}=0.755, T_{\text {max }}=0.808$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.069$
$S=1.06$
106 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.37 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 4 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.89	1.91	$2.786(2)$	168
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 4 A \cdots 1^{\mathrm{ii}}$	0.89	1.90	$2.778(2)$	169

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y+2,-z+1$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of Guangxi (GKJ0639031), People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2137).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Brodersen, K., Dolling, R. \& Liehr, G. (1980). Z. Anorg. Allg. Chem. 464, 1722.

Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chandrasekhar, K. (1977). Acta Cryst. B33, 143-145.
Cotton, F. A., Daniels, L. M., Montero, M. L. \& Murillo, C. A. (1992b). Polyhedron, 11, 2767-2774.
Cotton, F. A., Daniels, L. M. \& Murillo, C. A. (1992a). Polyhedron, 11, $2475-$ 2481.

Lee, A. van der \& Barboiu, M. (2004). Acta Cryst. E60, m421-m423.
Mäkinen, S. K., Melcer, N. J., Parvez, M. \& Shimizu, G. K. H. (2001). Chem. Eur. J. 7, 5176-5182.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Walsh, B. \& Hathaway, B. J. (1980). J. Chem. Soc., Dalton Trans. pp. 681-689.

supplementary materials

catena-Poly[[diaquamanganese(II)]-di- μ-pyridine-3-sulfonato- $\left.\kappa^{2} N: O ; \kappa^{2} O: N\right]$

Z.-H. Qiu, F.-P. Liang, Q.-F. Ruan and S.-R. Zhao

Comment

Structures of complexes or salts based on pyridinium-3-sulfonate are not numerous in the Cambridge Structural Database (CSD; Version 5.25; Allen, 2002). Some six-coordinate metal complexes with pyridine-3-sulfonate (pySO_{3}) ligands that are closely related to the title complex have been reported (Walsh \& Hathaway, 1980; Cotton et al., 1992a). Other pySO 3 complexes are also available (Brodersen et al., 1980; Cotton et al., 1992b; Mäkinen et al., 2001; van der Lee \& Barboiu, 2004), as well as that of the $\mathrm{pySO}_{3} \mathrm{H}$ acid (Chandrasekhar, 1977). There are two structures of the $\left[M\left(\mathrm{pySO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ type in the CSD. One of them is isostructural with the title compound (Walsh \& Hathaway, 1980; Cotton et al., 1992a) and the other structure is a two-dimensional coordination polymer (Brodersen et al.,1980).

The Mn atom is located on a centre of inversion and is six-coordinated by two N atoms and two O atoms derived from four different pySO_{3}, and two O atoms derived from two water molecules (Fig. 1). The resulting trans- $\mathrm{N}_{2} \mathrm{O}_{4}$ donor set defines a distorted octahedral environment for Mn . The bond angles deviate considerably from 90°; those derived from the bulkier groups deviate by nearly 6°. The $\mathrm{Mn} — \mathrm{O}$ (water) distance of 2.1681 (15) \AA and $\mathrm{Mn} — \mathrm{O}\left(\mathrm{pySO}_{3}\right)$ distance of 2.1772 (15) \AA are in the usual range. The $\mathrm{Mn}-\mathrm{N}$ distance is also in the usual range for pyridine-like ligands.

The metal ions are bridgeding pySO_{3} anions to form a chain. In the crystal structure, chains are linked into a 3-D architecture via hydrogen bonding interactions (Table $1 \&$ Fig. 2).

Experimental

Pyridinium-3-sulfonate, ($1 \mathrm{mmol}, 159 \mathrm{mg}$) was dissolved in methanol (A.R.,99.9\%) (10 ml). To the resulting clear solution was added $\mathrm{MnCl}_{2} .4 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol}, 98 \mathrm{mg})$ in methanol $(10 \mathrm{ml})$. After keeping the resulting mixture in air to evaporate about half of the solvent, colourless blocks of the title compound were deposited. The crystals were isolated and washed with alcohol three times (yield 82%). Analysis found (\%): C 29.38, H $2.90, \mathrm{~N} 6.89, \mathrm{~S} 15.80 ; \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{MnN}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$ requires (\%): C 29.47, H 2.94, N 6.87, S 15.71.

Refinement

The H atoms of the water molecules were located in a difference map. The H atoms bonded to C atoms were placed at calculated positions and refined in a riding-model approximation $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $\left.U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The $\mathrm{O}-\mathrm{H}$ distances were standardized to $0.89 \AA$ and the H atoms of the water molecules were refined in a riding-model approximation with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{O})$.

supplementary materials

Figures

Fig. 1. The atom-numbering scheme and 50% probability displacement ellipsoids for the title compound. The Mn atom is located at a center of inversion. H atoms are shown as small spheres of arbitrary radii [symmetry code: $(a)-1+x, y, z$].

Fig. 2. Crystal packing of the title compound viewed approximately down the a-direction showing the hydrogen bonding interactions as dashed lines.

catena-Poly[[diaquamanganese(II)]-di- μ-pyridine-3-sulfonato- $\kappa^{2} \mathrm{~N}: \mathrm{O} ; \kappa^{2} \mathrm{O}: \mathrm{N}$]

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=407.28$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=7.6299$ (13) \AA
$b=13.201$ (2) \AA
$c=7.2714(12) \AA$
$\beta=96.516(3)^{\circ}$
$V=727.7(2) \AA^{3}$
$Z=2$
$F_{000}=414$
$D_{\mathrm{x}}=1.859 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 2334 reflections
$\theta=2.7-26.4^{\circ}$
$\mu=1.24 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.24 \times 0.22 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 0 pixels mm^{-1}
$T=298(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.755, T_{\text {max }}=0.808$
1485 independent reflections
1301 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=26.4^{\circ}$
$\theta_{\text {min }}=2.7^{\circ}$
$h=-8 \rightarrow 9$
$k=-16 \rightarrow 15$
$l=-9 \rightarrow 7$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.069$
$S=1.06$
1485 reflections

106 parameters

Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0952 P)^{2}+1.5031 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.24 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.37$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.087 (3)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Mn1	0.0000	1.0000	0.0000	$0.01892(13)$
S1	$0.72645(6)$	$0.87969(4)$	$0.28519(7)$	$0.01996(14)$
O1	$0.7153(2)$	$0.95339(12)$	$0.4310(2)$	$0.0344(4)$
O2	$0.8234(2)$	$0.78954(11)$	$0.3466(2)$	$0.0345(4)$
O3	$0.7864(2)$	$0.92419(13)$	$0.1200(2)$	$0.0364(4)$
O4	$0.0783(2)$	$1.09357(11)$	$0.2404(2)$	$0.0316(4)$
H4A	0.1331	1.0735	0.3492	0.038^{*}
H4B	0.1133	1.1574	0.2295	0.038^{*}
N1	$0.2084(2)$	$0.88314(12)$	$0.1103(2)$	$0.0232(4)$
C1	$0.1706(3)$	$0.78382(15)$	$0.1017(3)$	$0.0249(4)$
H1	0.0547	0.7645	0.0646	0.030^{*}
C2	$0.2946(3)$	$0.70884(16)$	$0.1449(3)$	$0.0296(5)$
H2	0.2627	0.6409	0.1363	0.035^{*}
C3	$0.4668(3)$	$0.73661(15)$	$0.2010(3)$	$0.0263(4)$
H3	0.5534	0.6878	0.2303	0.032^{*}
C4	$0.5079(2)$	$0.83896(15)$	$0.2129(3)$	$0.0188(4)$

C5	$0.3761(3)$	$0.90965(14)$	$0.1666(3)$	$0.0224(4)$
H5	0.4047	0.9781	0.1747	0.027^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	$0.0134(2)$	$0.0187(2)$	$0.0237(2)$	$-0.00056(15)$	$-0.00157(16)$	$0.00122(16)$
S1	$0.0146(2)$	$0.0193(2)$	$0.0250(3)$	$0.00040(17)$	$-0.00246(18)$	$0.00251(18)$
O1	$0.0305(8)$	$0.0318(9)$	$0.0386(9)$	$0.0022(7)$	$-0.0057(7)$	$-0.0107(7)$
O2	$0.0252(8)$	$0.0247(8)$	$0.0499(10)$	$0.0067(6)$	$-0.0114(7)$	$0.0029(7)$
O3	$0.0228(8)$	$0.0506(10)$	$0.0356(9)$	$-0.0106(7)$	$0.0022(6)$	$0.0125(8)$
O4	$0.0398(9)$	$0.0249(8)$	$0.0281(8)$	$-0.0042(7)$	$-0.0054(7)$	$-0.0024(6)$
N1	$0.0170(8)$	$0.0215(8)$	$0.0302(9)$	$-0.0009(7)$	$-0.0012(7)$	$0.0025(7)$
C1	$0.0186(10)$	$0.0253(10)$	$0.0298(11)$	$-0.0038(8)$	$-0.0014(8)$	$0.0006(9)$
C2	$0.0281(12)$	$0.0184(10)$	$0.0416(13)$	$-0.0043(8)$	$0.0011(10)$	$-0.0005(9)$
C3	$0.0213(10)$	$0.0182(10)$	$0.0393(12)$	$0.0042(8)$	$0.0025(9)$	$0.0039(8)$
C4	$0.0152(9)$	$0.0206(10)$	$0.0205(9)$	$-0.0006(7)$	$0.0009(7)$	$0.0013(7)$
C5	$0.0186(10)$	$0.0156(9)$	$0.0322(11)$	$-0.0011(7)$	$-0.0009(8)$	$0.0012(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

Mn1-O4	2.1681 (15)
$\mathrm{Mn} 1-\mathrm{O} 3{ }^{\text {i }}$	2.1773 (15)
Mn1-N1	2.2937 (16)
S1-O2	1.4449 (15)
S1-O1	1.4489 (16)
S1-O3	1.4570 (16)
S1-C4	1.7737 (19)
O4-H4A	0.8922
O4-H4B	0.8897
N1-C1	1.342 (3)
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{O} 4{ }^{\text {ii }}$	180.0
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{O} 3{ }^{\text {i }}$	95.12 (6)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Mn} 1-\mathrm{O}^{\text {i }}$	84.88 (6)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Mn} 1-\mathrm{O} 3{ }^{\text {i }}$	180.0
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{N} 1$	89.13 (6)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{N} 1$	90.87 (6)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Mn} 1-\mathrm{N} 1$	85.90 (6)
O3 ${ }^{\text {i }}$-Mn1-N1	94.09 (6)
$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Mn} 1-\mathrm{N} 1$	180.00 (6)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	113.41 (10)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	112.91 (10)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 3$	112.51 (10)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 4$	105.84 (9)
O1-S1-C4	106.81 (9)
O3-S1-C4	104.50 (9)
$\mathrm{S} 1-\mathrm{O} 3-\mathrm{Mn} 1^{\text {iv }}$	146.62 (10)

sup-4

supplementary materials

Mn1-O4-H4A	127.1	N1-C5-H5	118.7
Mn1-O4-H4B	121.7	C4-C5-H5	118.7
H4A-O4-H4B	104.2		
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3-\mathrm{Mn} 1^{\text {iv }}$	-66.4 (2)	C1-C2-C3-C4	0.4 (3)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 3-\mathrm{Mn} 1^{\text {iv }}$	63.6 (2)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-0.6 (3)
$\mathrm{C} 4-\mathrm{S} 1-\mathrm{O} 3-\mathrm{Mn} 1^{\text {iv }}$	179.06 (19)	C2-C3-C4-S1	179.69 (16)
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 1$	137.80 (16)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5$	172.26 (16)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 1$	-42.20 (16)	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5$	51.12 (18)
$\mathrm{O} 3{ }^{\text {iiii }}-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 1$	-137.26 (16)	$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5$	-68.31 (18)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 1$	42.73 (16)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 3$	-8.1 (2)
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 5$	-49.49 (16)	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 3$	-129.20 (18)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 5$	130.51 (16)	$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 3$	111.38 (18)
$\mathrm{O} 3{ }^{\text {iiii }}$-Mn1-N1-C5	35.44 (16)	C1-N1-C5-C4	0.7 (3)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 5$	-144.56 (16)	$\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	-172.23 (14)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-0.9 (3)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	0.1 (3)
$\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	172.13 (16)	$\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	179.77 (16)
N1-C1-C2-C3	0.4 (3)		

Symmetry codes: (i) $x-1, y, z$; (ii) $-x,-y+2,-z$; (iii) $-x+1,-y+2,-z$; (iv) $x+1, y, z$.

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{v}}$	0.89	1.91	$2.786(2)$	168
O4—H4A $\cdots \mathrm{O} 1^{\text {vi }}$	0.89	1.90	$2.778(2)$	169
Symmetry codes: $(\mathrm{v})-x+1, y+1 / 2,-z+1 / 2 ;($ vi) $-x+1,-y+2,-z+1$.				

Fig. 1

Fig. 2

